
M-ft?6 3 NEAKY OPTIWL .GMITIU NS M UBFO PU LTILNM in
CHUEL ROUTINS(U) PMSAC1NSETTS INST OF TECH CfiNIDE
US FOR COSPUER SCIENCE. 9 RWE ET M. KEC U

WL SX:M FE YLSI-N EO46351 4 N US14UCS6F/0 M E



IN_

12-2

2-0-

II21-25 1 14 6

Ik

% %.. %~* % .%--v .~*%**-v~..-- ' . . *.q%* ~v.. %' *. ~ ~-. 1



"* r 'Tv i-r
MASSACHUSETTS INSTITUTE OF TECHNOLOGY W a VLSI PUBLICATIONS

CLECTE f
VLSI Memo No. 86-351 FE 1 107
December 1986

CDD
C

NEARLY OPTIMAL ALGORITHMS AND BOUNDS FOR MULTILAYER CHANNEL ROUTING

I
Bonnie Berger, Martin Brady, Donna Brown, and Tom Leighton

Contract N00014-80-C-0622

Abstract

This paper presents algorithms for routing channels with L > 2 layers; we
not only present substantial new results, but we provide a unifid framework
in which many previously known results can be obtained. For the unit-
vertical-overlap model, we describe a 2-layer channel routing algorithm which
uses at most d + O(/d) tracks to route two-point net problems and
2d + O(V'd) tracks to route multipoint nets. In addition, we show that
d + Q(log d) tracks is a lower bound on channel width for 2-layer routing
allowing even arbitrary length overlap. Moreover, our algorithm can also be
used to obtain the 'Town bounds for the Manhattan and knock-knee models. We
generalize the algorithm to unrestricted multilayer routing and use only
d/(L - 1) + O[/(d/L)J tracks for two-point nets (within O[V(d/L)] tracks of
optimal) and d/(L - 2) + O(/d) tracks for multipoint net problems (within a
factor of (L - 1)/(L - 2) times optimal).
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Abstract. This paper presents algorithms for routing channels with L2!2 layers; we
not only present substantial new results. but we provide a uniied framework in which
many previously known results can be obtained. For the unit-vertical-overlP model,
we describe a 2-laver channel routing algorith rp3vhich uses at most d+ O(Vd ) tracks
to route two-point net, problems and 2d+ (vd) tracks to route multipoint nets. In
addition, we show that, d+fl(loy d) tracks is a lower bound on channel width ror for
2-layer routing allowing even arbitrary length overlap. Moreover, our algorithm can
also be used to obtain the known bounds for the Manhattan and knock-knee models.
We generalize the algorithm to unrestricted multilayer routing and use only

-+ O(V1 ) tracks for two-point nets (within O( /L ) tracks of optimal) and

d + O(Vd) tracks for multipoint net problems (within a factor of L-I times
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, :W7. A.

1. Introduction.

Channel routing plays a crucial role in the development of automated layout systems for

integrated circuits.( e, -e.g.,, [HS71],[R82]1. Most layout systems first place modules on a chip

and then wire together terminals on different modules that should be electrically connected. This "

wiring problem is often solved by heuristically partitioning the given space into rectangular chan-

nels and then assigning to each such channel a set of wires which are to pass through it. This

solution reduces a global' wiring problem to a set of disjoint (and hopefully easier) "local" chan-

nel routing subproblems, For this reason, the channel routing problem has been intensively stu-

died for over a decade, and numerous heuristics and approximation algorithms have been pro-

posed.( [BBL84]. [BraBr85], [D78], [PL84], [RBM81], [RF82], [YN82]).
-I

The generic form of the channel routing problem may be described as follows. The channel

consists of a rectilinear grid of tracks (or rows) and column.s. Along the top and bottom tracks

are numbers called terminals, and terminals with the same number form a net. A net with r ter-

minals is called an r-point net. The smallest net is a 2-point net; if r>2. we have a inultipoint

net. The channel routing problem is to connect all the terminals in each net using horizontal and

vertical wires which are routed along the underlying rectilinear grid. The goal is to complete the

wiring using the minimum number of tracks; i.e., to minimize the width of the channel.

A variety of models have been proposed for channel routing, with differences depending on

the number of layers allowed and on the ways in which wires are allowed to interact. The sim-

plest is river routing, in which only one layer of interconnect is available. Unfortunately. only

planar problems are routable, and even a simple routable problem (like an \' net shift-left-by- I)

may require N tracks to river route. .5.
'5.

Two-layer models are relevant to practice, however, and have been extensively studied. The

most common 2-layer model is the traditional Manhattan routing model. In the Manhattan

model, horizontal wire segments are routed in one layer and vertical wire segments are routed iu

the other layer. Hence, wires can cross but cannot, overlap (i.e., run on top of one another) for
r .'
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any distance. Note that when a wire changes direction, it must also change layers, which requires

a contact cut at the corresponding grid point. Where a contact cut is used, no other electrically

disjoint wire can pass through that grid point in either layer.

Unfortunately, channel routing is NP-complete for many interesting routing models, includ-

ing Manhattan routing and even for the special case of 2-point nets (Sz851,ISY82I). Fortunately.

however, a linear time approximation algorithm is known for Manhattan routing [BBL84] and the

bounds obtained for channel width are based on the notions of density, d, and flux, f. The density

of any channel routing problem is the maximum number of distinct nets crossing (or touching)

*any vertical cut of the channel. It is not difficult to see that the density of a problem is a loA~er

bound on its channel width in the Manhattan model. A channel has flux fi f is the largest

integer for which some horizontal cut spanning 22 columns splits at least 2f2-f nets. (The flux

definition assumes no trivial nets, i.e., no 2-point nets with both terminals in the same column).

Flux, like density, is a lower bound on channel width ([BBL84],[BR81]) and although the flux can

be as large as N/.' for an ,V-net problem (e.g., the shift-left-by-I), it is often much smaller in

practice. In [BBL8I], Baker, Bhatt and Leighton devised an algorithm to route any Manhattan

problem with density d and flux fin a channel of width 2d+ 0(f). For 2-point nets, the upper

bound is d+ 0(f).

The kno,'k-knee model proposed by Rivest. Baratz, and Miller [RBM8I] also uses two layers

but does not constrain vertical wires to be routed in a different layer than horizontal wirc.

Ilence, wires are allowed to share corners (e.g., a wire can bend on the top layer directly above a

i ire bending on the lower layer), but they are still not allowed to overlap. Density again serve,

as a lower bound on channel width in the knock-knee model. Flux does not play a role, however,

and every 2-point net knock-knee problem can be routed using 2d- I tracks [R3M81], [Boli821

(Id-I tracks are sufficient for multipoint net problems). Somewhat surprisingly, 2d- I is actu-

ally optimal in the worst case; this lower bound was demonstrated by Leighton [L811 when lie

discovered a class of 2-point net problems which require 2d- I tracks for any d.

.. .'- .7
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The question remained, however, whether a better algorithm could be found if a less restric-

tive (but still electrically sound) model were allowed. In the first part of this paper, we answer

this question affirmatively by describing an algorithm that routes any 2-point net problem with

density d using only d+ O(V ') tracks. For multipoint net problems, the upper bound is

2d+ O(Nd ). The model used is an extensidn of the knock-knee model, in which wires are allowed

to overlap for unit segments in the vertical direction. We call this the unit-vertical-overlap

model.

Density is. of course, an obvious lower bound on channel width in this unit-vertical-overlap

model. In addition, we present an improved lower bound for 2 layer routing. We show that some

CRPs require d + fl(log d) tracks even when vertical overlap of arbitrary length is allowed. This

is significant in that it shows that optimal routing algorithms must use d+ O(g) tracks, where g

is some sublinear function of d.

Although we have saved only a factor of two in channel width, and even then only at the

expense of weakening the model, the result is significant for several reasons. First, it is the last

factor of two that can be gained; we are approaching the lower bound. Second, the facr'r of two

is very important in practice and we are approaching algorithms that could be useful in practice.

Third. the result shows that some routing problems become easier when unit-vertical-overlap is

allowed. Since such overlap may be allowable in practice, the result may lead to innovations in

practical routing algorithms. Fourth, and possibly most important, our algorithm presents a

unified framework which can also be used to duplicate the Baker-Bhatt-Leighton results for

Mlanhattan routing and the Rivest-Baratz-Miller results for knock-knee routing. This is some-

what surprising since the algorithms used to obtain these results were very different and highly

model dependent. (Actually, our algorithm can be roughly described as a simplification and sub-

stantial generalization of the Baker-Bhatt-Leighton algorithm.) It is important to identify algo-

rithms that are tolerant to variations in model restrictions, since real-world channel routing prob-

' lems often differ from the corresponding mathematical abstractions. Hence, algorithms that 4re

- .
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tolerant to model changes are more likely to be reducible to practice in the long run.

In the second part of this paper, we describe the extension of our algorithms to multilayer

channel routing. Recent advances in fabrication technology have increased the importance of

multilayer channel routing. The initial theoretical work in this area is due to Preparata and

Lipski [PL84] who defined the 3-layer knock-knee model and discovered an efficient algoribin for

routing any 2-point net problem in the optimal number of d tracks. For routing multipoint net.s

in this knock-knee 3-layer model, the best known algorithm uses 2d- 1 tracks [SP85].

Some recent results have been obtained for routing with L layers, L 3. Hambrusch in [H8.1]

gave an algorithm which routes 2-point nets using d 1  +3 tracks for L>5 with arbitrary

:2 ,3 ,
overlap: -d and d results are obtained for L 3 and L=4, respectively. Subsequently, Brady

and Brown [BraBr8,51 used arbitrary overlap to route any multipoint net problem using at most 11

a J +5 tracks for L>7 (inferior results are obtained for smaller L values). For a (i ffcreD t

model, in which wires are allowed to overlap, but not on adjacent layers, their algorithm use Lt

most 2 -+3 tracks, within three tracks of optimal.
L

Extending Leighton's lower bound of d for L=2 [L811, Hambrusch showed that at least

tracks are required to route any channel routing problem with L layers, even if wires are

allowed to overlap [H831. In this paper we generalize our 2-layer algorithm in order to route any

2-point act problem using d- + LVuig +OVd2
2-oi n~ role u Ln i O(dL ) tracks and usn d O dL ) to route any

multipoint net problem. Notice that these results are very close o optimal in the worst case,
VL-1 .

within O(VdL) tracks for 2-point nets and within a multiplicative factor of -_'times optimal . "

for multipoint nets. Both algorithms give notable improvements over previous results, and they

A
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come very close to the inherent limits imposed by the problem.

The remainder of this paper is divided into sections as follows. In Section 2, we lay the

groundwork for the 2-layer unit-vertical-overlap algorithm, describing some of the basic ideas and

showing how to replicate the known results for Manhattan routing and knock-knee routing. Sec-

tion 3 contains the unit-vertical-overlap algorithm. In Section 4 we present improved lower

bounds for overlap routing. We generalize the algorithm to multiple layers in Section 5. For sim-

plicity, we restrict our attention to 2-point net problems in Sections 2-5: multipoint net results

are discussed in Section 6. We conclude in Section 7 with some remarks and open questions.

For brevity in this extended abstract, we have omitted much of the technical material from

sections 2-6: the interested reader may refer to the Appendix and the attached figures in order

to provide insight into the operation of the algorithms.

2. General Strategy.

The general strategy in all of our algorithms will be to partition the channel into blocks of r

consecutive columns. The algorithms then proceed in two phases. The first phase uses tracks in

the middle section of the channel to route each net from the block in which it begins to the block

in which it ends. At the end of Phase 1, all that remains is to route the nets within each block

into their correct columns; Phase 2 does this using the top and bottom sections of the channel

(see Figure 1).

Phase I ib the core of the routing strategy. It proceeds a block at a time from left to right.

Nets are differentiated into three types. A verticfal net has both of its terminals in the same

block. Among nets having terminals in different blocks, a falling net has its rightmost terminal on

the bottom of the channel, while a rising net has its rightmost termin"I on top. These defir,>1ions

cover both top-to-bottom and same-side nets. While our description of the algorithms is limited

to top-to-bottom nets, same-side nets are a trivial extension, and our algorithms hold for both

" typeo of 2-point nets. A rising/falling strategy is employed: falling (rising) nets are packed into

. -
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the lowest (highest) tracks available for horizontal routing. The empty tracks between the rising

and falling nets are reserved to route blocked entering nets by backtracking to the left through a

pyramid.

The choice of r, the block size. is dependent on the routing model. For 2-layer Manhattan

routing [BBL84], use a block size r- O(f) to obtain a d+ O(f) algorithm for 2-terminal nets. For

thc 2-layer knock-knee model, we can take r= 1, and eliminate Phase 2 altogether. The resulting

algorithm requires 2d- I tracks: d tracks for horizontal routing, each separated by an empty

track to be used solely for layer changes. Thus, the knock-knee version reproduces the re-ults of

[R B.%11. [Bo rS2].

3. Routing in the (2-Layer) Unit-Vertical-Overlap Model.

For the unit-vertical overlap model, we choose the block size proportional to /'d. Inter-

block routing is divided into Phases 1.1 and 1.2. Phase 1.1 routes nets between blocks in ;I
manner very similar to the .Manhattan interblock routing procedure [BBL84]. We form disjoint

ending net, continuing net, and beginning net staircase patterns, but these patterns are separ;it td

vertically in this algorithm by empty tracks, rather than horizontally, as in [BBL84]. S a re!ult.

we do not need the additional columns which led to the flux term in [BBLSl], but we do nceod

additional tracks. In fact, it is assumed that upon entering a block, five empty good tracks. G I -

G5, have been placed among d Manhattan routing tracks, in the precise positions to vert ic:ll

separate the staircases. These d+5 tracks are called primary tracks, and are used to route the

nets between blocks in Phase 1.1.

Some of the details of Phase 1.1 may be found in Section 1 of the Appendix, and illustrated

in Figure 2. ['base 1.1 assumes that five good tracks have been placed in the correct position,

upon entering the current block. Phase 1.2 guarantees this invariant by positioning five empty

extra tracks for use in the next block as good tracks. These five tracks are actually the bad

tracks created in the previous block. To accomplish this, 5 d '"_0 additional empty reserie4

S.-
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tracks are evenly spaced in the channel at intervals of y= r/5 tracks. An extra track is moved to

any desired location by a series of one unit vertical jogs, as in Figure 3. The reserved tracks

break up the horizontal propagation so that at most y columns are required to move any distance. -"

Thus. a total of Sy= r columns is sufficient to propagate all five extra tracks. The one unit verti-

cal jogs are done in the horizontal layer, so they do not interfere with Phase 1.1, except to cause

one unit vertical overlaps.

Lemma 1: Phase 1 requires at most (d+ 5) + .5( 4+ 10) + 5 tracks.
r

Since Phase 1 has routed all nets to the correct blocks, the densities of the top and bottom

sections of the channel are each bounded by r. For Phase 2 apply, for instance, a no-overlap,

knock-knee algorithm ([RBM811, [BoBr82]) which routes a channel in 2d- 1 tracks. Thus, the top

and bottom sections can each be routed using 2r- 1 tracks.
",*

Lemma 2: Phase 2 requires at most 4r- 2 tracks.

Phases 1 and 2 together route any two terminal net channel routing problem. By Lemmas I

and 2 we know that we have used I = (d+5)+ 5d+10) +5+ (4r-2) tracks. Choosing rin order
r

to minimize 1. we see that our algorithm uses I = d+ 4 ./ 5 (d+ 10)+ 8 tracks.

Theorem 1: Any two terminal net channel can be routed in two layers using d + Od/) d

tracks, allowing unit-vertical-overlap.

4. Lower Bound.

Our unit-vertical-overlap algorithm is still O(V\1 d) tracks over the obvious lower bound.

However. in this section we give a better lower bound of d + fl(log d) tracks which holds even if

vertical overlaps of arbitrary length are allowed. Technical details of the proof may be found in

Section 2 of the Appendix. Define a CRP consisting of four consecutive sets of d columns each.

such that the d upper terminals of set I connect to the d lower terminals of set i+ 1, for I S iS 3

(see Figure 1). The actual permutation of lower terminal connections within each set is not



specified. Notice that all of the nets are falling, and the density in columns d+ I through 3d i.

precisely d. We assume that d+K tracks are available for routing7

We wish to consider only the routing within the middle two 3ets of the CRP. We refer to "

this 2d column subproblem as the restricted region. We can show that within this region, only

O(I-d) empty unit vertical segments may exist. Since the density is d throughout the region, at

most K tracks are empty at any column as well. This means that large regions ex',t in which no

horizontal or vertical segment is empty. Routed is very restricted in such regions, and so we :Ire

able to bound the number of possible different routings within the restricted region: Only')'' 4

different choices are possible. But at least d! different routings are required in the restricted

region, correponding to the d! different permutations of the nets being routed from the upper left

to lower right. This gives 2 0(K d) = d!, and thus = fl(log d).

Theoren 2. The optimal solution to some CRPs of density d requires d + fl(log d) tracks.

This lower bound proof counts only the num ber of different, routings possible in a given ,area.

\Ve may be gro ,sly overestimating the number of different problems that can be routed. :ince

there are many different ways in which to route a single problem. Also, the problem we con-

sidered is not at all complex. It contains only 4d nets, all of them falling. Thus, it seems feasible

that the lower bound could be further improved using a different strategy. We suspect that in

the worst case. d + fl(%/ d) tracks may actually be required.

5. General Algorithm for L Layers.

We can extend Section 3's tw. layer unit-vertical-overlap routing algorithm in order to hain-

dIe multilayer channel routing, in which arbitrary overlap is allowed in an L-layer channel. In

our L layer algorithm, each Manhattan rauting track contains up to L - 1 different nets, in layers

2 through L. Layer I is reserved for vertical connections. Now, both a track and a layer (2

through L) are required to uniquely specify a net's horizontal position; each track is said to con-

sist of L - I la ies.

7-
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Five primary good/bad tracks are still required in order to separate staircase patterns, but -"

now we differentiate between two types of good/bad tracks. An empty good/bad track contains

no nets at all in any of its L - 1 lanes, while a partial good/bad track contains nets in layers 3

through L (only layer 2 is empty). It is assumed that any net which exits in a given block B will

,e in layer 2 upon entering the block. To insure this, nets which ex', in block B are swapped into

layer 2 in block B-1. during Phase 1.2. In addition, Phase 1.2 is still used to move five empty

tracks into good positions for the next block.

Notice that if two u,ts in the same track both exit in the same block, both may not be

swapped into layer 2. Further, a net which exits in B may not be swapped into layer 2 in B- 1

(to exit in B) if another nat in its track exits in block R- I, and therefore is already using layer 2.

To avoid these conflicts, we want to insure that at most one of the L -1 nets in any given pri-

mary track exits in any pair of consecutive blocks. To achieve this, group the blocks into sets of

211, - 1) consecutive blocks. We only require that a net be routed into the correct set of blocks in

Ph:tie 1.1. An additional step. Phase 1.0, is added to reorder the nets between blocks and to

inure that two nets never exit from the same track in the same or adjacent blocks.

The \ppendix provides some details of the Phase I routing, which uses at most

+ i)tracks. Since the nets have been routed to within the correct set of 2(L -I1)

J~lr~k, in ['h.e I. Thus, the top and bottom sections each have density at most 2(L - )r. Phase

Ornplo.%d traks impl ovraprutno
he 'im ple overlap routing algorithm of [BraBr8.S which uses tracks, and so

2 ~npl\ [ra~85lrL/21 -I

ihiase 2 of our L layer algorithm uses at most O(r) tracks. Phases I and 2 together route an L

:Lver channel in a total of d + O[--' + O(r) tracks, according to Lemmas 4 and .5. The

block ,ize r. ch,,en to minimize this quantity, is r -o(Vd/'d ). This implies the following

theorem.
A i..Z.
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Theorem 3: Any two terminal net channel can he routed in the L layer arbitrary o,.erl.Lp

model using Ld I+O(V/d/L ) tracks.

8. Multipoint Nets.

Both the two-layer and the general algorithms can be extended to handle multitermit, d net,

*For the unit-vertical-overlap model, the strate.gy is to create two horizontal wires for e.ach ettr-

i ng Intitteruiinal net, one in the rising and one in the falling qide of the channel. The net , \ l

ling (rising) portion ends wben the rightmost block containing a lower (tipper) terminal of thar

net is, reached. This potentially doubles the number of Manhattan routing track, required

Theorem 4: Any multipoint channel routing problem can be route(] in the 12-laser) unit-

Vertical-overlap model using 2d + 0('d) tracks.

This same strategy applied to L layer routing would use 2d horizontal routing lanes and t hus

le2 to + (_)(V diL ) track algorithm. But this is inferior to even the imple~t multtr-leadto aL

* inal net routing algorithm of 'BraBrS51. However, if swe allow t wo laver-%. I and L.. for vertIC Ll

routing. then %%e elliminate vertical constraint% andI can route with only d horizontal routing Line,

Theorern .: Any multipoint channel routingl problem can be rout ed in the 1. layer (I,--

arbit rary overap model using d + 0(V dIL ) rac k5. J

7. Remarks and Open Questions.

The work presented here has served to tie together many of the theoretical channel routing

results and has resolved a number of open is, ues. There are two central quest ions left open bY

this work. First, is the additive 01V71d term necessary' We suspect that it isk. in the worst case.

even for the least restrictive -2-layer modlel.

Second. (10 multipoint net problems re-aly require larger channel widths than 2-point nr't

problems' B~ecall that very little progress had heretofore been wjade on this Issue For almot All

% V,
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models studied, the best known algorithms hale in the worst case used roughly , tactor of two

tme, -s manY tracks for multipoint as for 2-point nets (nonadjacent overlap models being tile

notable exceptions) \Ve have at least shoNin that this barrier breaks down for L >'

The al.-orithms presented in this paper are all based on the same ideas and therefore gie a

unified framework in which to obtain bounds for various routing models: lanhattan. knock-

knee 2 la_ er unit-%ert cal-overlap, multilayer routing with arbitrary overlap Thus, %e can hope

that an improvement of a bound for any of these models might well generalize to the others %%e

hope in the near tuttire to extend the universality of our method to also include known 3-laYer

resulti In addition, we expect to be able to improve the constan1s in our algorithmic bounds

8. Acknowledgements and Related Independent Work.

The unit-vertical-overlap model was first defined in unpublished work of Leighton and

Pinter in the siiniwer of 19,A3 at Bell Labs. At the time, Leighton and Pinter claimed (but (lid not

publi,h) a 1 + ()( 4- ) bound on channel width for 2-point net problems land twice that for mul-

tipoint net,) ( \lo in unpublihed work. Brown had in 1982 independently proved a -d hound
4

for 2-point net problems. using a less demanding 2-layer model.) Subsequently, Gao proved a .4

upper bound for 2-point net problems using the unit-vertical-overlap model. This was later

improved to .4 + 0(d ' ) by Ilambrusch in 1985, rediscovering the original bound of Leighton and

Pinter. The Hambrusch and Gao work has been combined to form [G1[85]. The original work, of

Leighton. Pinter, and Brown have never appeared and are subsumed by this extended abstract

It iq quite possible that Ron Pinter will become a coauthor of this paper, reflecting his tundametl-

tal contributions to our early results. In any case, we are indebted to him for valuable ideas and

discussions.
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APPENDIX

Some Technical Details 'S

1. Phase 1.1 for the 2-Layer Unit-Vertical-Overlap Model.

Phase 1.1 consists of the following six steps. We refer the reader to the example

worked through in Figure 2.

Step 1: Nets having their rightmost terminal in the current block B (and the other
terminal not in B) are called ending nets. Ending falling (rising) nets exit in the left-
most columns, ordered from the highest to lowest (lowest to highest) (Figure 2a).

Step 2: Nets having one terminal in a block to the left of B and the other in a block
to the right of B are called continuing nets. Tracks vacated in Step 1 are filled in
using the highest ralling (lowest rising) continuing nets, using G5 (GI) to separate
the staircase patterns (Figure 2a). Each good track used results in an empty track
at the right of t.he block, called a bad track. B5 in Figure 2a is the bad track
corresponding to G5.

Step 3: If there are more ending rising (falling) nets than ending falling (rising) nets.
balance the difference by routing starting rising (falling) nets (i.e., nets with their
leftmost terminal in B). Then, expand the pyramid into the vacated tracks. Notice
that two more good tracks, G2 and G4, are used in this step (Figure 2b).

Step 4: If the remaining number of starting falling nets is greater than (less than)
the number of starting rising nets, route the starting falling (rising) nets directly, as
in Figure 2c.

Step 5: Route the remaining starting rising (falling) nets through the pyramid,
separated from the starting falling (rising) nets by G3 (Figure 2c). %

Step 6: Conclude the routing of block B by routing all vertical nets trivially across
the channel.

2. 2-Layer Lower Bound.

We discuss here some details of the lower bound proof within the restricted region.

Consider a horizontal (vertical) cut between two tracks (columns). A net with a terminal
J.

on either side of the cut must use one or more unit-vertical (horizontal) segments to cross

-". the cut. The first segment used, traveling downward from upper to lower terminals is

called an initial crossing. Our counting argument hinges on initial crossings; unit

%,01
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segments containing non-initial crossings are treated just as unused, or empty segments.

We make the following observations about routing within this region:

1. There are at most K unit-vertical-overlaps in which both wires are initial crossings in
any column. This is because each unit overlap causes an empty track on either side
of the column.

2. Exactly d horizontal segments'per column contain initial horizontal crossings, since
the density is d at all columns.

3. At most O(K-d) vertical segments may fail to contain an initial crossing. The set I
+ 3+* +d (d+ I d initialcrsig..\and set 3 nets each cause at least 1 +2+3+ crossing. t

most K set 2 nets can leave the restricted region. so they add at least (d-)(11+ I0
initial crossings, and from Observation 1, only 2dK initial crossings can share a single
vertical segment.

Our initial strategy is to bound the number of different choices allowed for routing a

single column. Initially, the order in which set 1 nets enter the leftmost column will be

decided by the choice of routings made within the restricted region, so that the correct

connections are made to the lower left terminals.

There are 2 0(d K) ways to divide the O(d-K) empty vertical segments between the 2d 4W

2d
columns. Define each column i to have k, empty segments, such that I; k, = O(dK).

s-I4

The column can be divided into K+1 groups of consecutive initial horizontal cros-ing-.

separated by K empty horizontal segments. Routing within a group is restricted in the

following sense. The highest net which turns downward determines all routing below% it iII

a group. This claim is illustrated by the examples in Figure 5. Further, all vertical

ments in the group above the highest downward turning net obviously contain no vertlc:l

initial crossings. But since there are at most k, "empty" vertical segments, the highest

dropping net must have been within k, tracks of the top of the group. There are 0(21 '' k

ways to divide the k, empty segments between the K+ I groups. This done, there reinin t

only 0(k,) tracks whose routing is not yet determined, and so in all, the number of posi-

ble routings for column i is bounded by 2
° It ' * .:

%-.,
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Now consider the entire region of 2d columns. The maximum number of different

routings for the entire region is II 20(k,+K) = 2 (Kd), since 2 , 2d. But we must be

able to route at least d! different problems in the region, corresponding to d! different per-

dp
mutations for the nets of set 2. Thus, 2 0(Kd) = d! > -!-I, and so K - fl(log d).

~e

3. L Layer Algorithm.

Phase 1.0 uses a greedy strategy to reorder nets in each set of 2(L -1) blocks. Nets

are selected for a given block just before it is to be routed. An exiting net in track t is a

feasible selection for block B if no other net in t has been selected to exit in B or B- 1.

From the feasible set, simply select a net from the track containing the most nets which

exit in this set. Then update the feasible set, and repeat until no further additions to the

current block are possible. The remaining terminals are filled by starting and vertical

nets, in any order.

Phase 1.1 is organized just as in the unit-vertical-overlap algorithm into six steps.

Phase 1.1 routing for L layers is illustrated in Figure 6. There are now two types of inter-

locking staircases. Ending nets exit only from layer 2, ahd so G1 and G5 need not be com- ..
.4

pletely empty. GI and GS are partial good tracks, having only layer 2 unoccupied. On

the other hand, good tracks must be completely empty when continuing nets are used to

fill in the vacated lanes, so that falling (rising) nets remain packed into the bottommost

(topmost) primary tracks. The pyramid is formed in all L-I horizontal layers as well, so

G2, G3, and G-1, called empty good tracks, are completely empty in order to separate all

L - I lanes of the corresponding staircases.

Phase 1.2 has two purposes in the L layer algorithm. First, the five extra tracks are

moved into good track positions for the next block. Second, all nets which exit in the next

block are swapped into layer 2. The reserved tracks are evenly spaced y- r/8 tracks apart

b. :d -. :¢ :-.-- .--. J: .; . % : .. : :
- "

"" x,, :'." : . - "-"',":, ::" :"" "" " " "
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in order to achieve both of these requirements.

The first 5y columns of the block are used to move five extra tracks (two partial.

three empty) into good track positions for the next block, exactly as in the previous algo-

rithm. The remaining 3y columns are used to swap exiting nets into layer 2. This 1% (lone

by propagating another empty extra track through the entire width of the channel. Any

track containing a net to be swapped into layer 2 will be jogged and 5wapped using three

columns, as shown in Figure 7.

Block Block ...
1 2

O(V7) Top Section Phase 2

d + O(d) Middle Section Ph:tse I

O(V7) Bottom Section } Phase 2

r r

Figure 1. The two phase partition of the uuit-verticaloverlap algorithni.

.~,~, J% .,
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G4 --

G5- Continuing Net
Staircase

-B5

Efld~i n Nets

G2 ~ G2

G2-- -- - ------- ----- ---------------- Renn

-------------

'2~ G3

- 77

- B3

Balancing Entering
Nets Nets

(b) (c)

Figure 2. Manhattan interbiock routing procedure.

(a) Exit all ending nets.
Repack rising/ralling structure with continuing nets.

(b) Expand the backtracking pyramid.
Balance excess exiting nets using entering nets.

(c) Route the starting nets.
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Rk

R+ I
El--

e.

Figure 3. Propagating an extra track El to a next block good position GI. R, denotes
reserved track i.

V.

Set I Set 2 Set 3 Set 4

I I
I I

I I
dkI !

I I

trackq
I I

I I!

I I

d d d

Figure 4. CRP for lower bound argument
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G ,5 ---

S2 . .-

olI r - -

I I II I l i-
I I i I .
I I I I a-

I 1 ,

B5

(a) (b)

= - = --

I 
-

L - E' - - - i*

-3 -

"-- --" B3

(c) "

Figure 6. Manhattan interblock routing in L layers.

(a) Exit all ending nets (from layer 2).Repack rising/ralling struct ure with continuing nets (layers 2 through L).
(b) Expand the backtracking pryamid.

Balance excess exiting nets .,,iing entering net.s (not pictured).
(c) Route the starting nets, in L -I lavers of the pyramid.
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empty vert. empty vert.

segments segments

no choice - no choice

(a) (b)

Figure 5. Restricted routing within a group.

b-A.

2

Figure 7. A net in layer 4 is swapped into layer 2 in a (three column) jog.
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